掌握了Python的数据类型、语句和函数,基本上就可以编写出很多有用的程序了。
比如构造一个1, 3, 5, 7, ..., 99
的列表,可以通过循环实现:
L = []n = 1while n <= 99: L.append(n) n = n + 2
取list的前一半的元素,也可以通过循环实现。
但是在Python中,代码不是越多越好,而是越少越好。代码不是越复杂越好,而是越简单越好。
基于这一思想,我们来介绍Python中非常有用的高级特性,1行代码能实现的功能,决不写5行代码。请始终牢记,代码越少,开发效率越高。
切片
取一个list或tuple的部分元素是非常常见的操作。比如,一个list如下:
>>> L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']
取前3个元素,应该怎么做?
笨办法:
>>> [L[0], L[1], L[2]]['Michael', 'Sarah', 'Tracy']
之所以是笨办法是因为扩展一下,取前N个元素就没辙了。
取前N个元素,也就是索引为0-(N-1)的元素,可以用循环:
>>> r = []>>> n = 3>>> for i in range(n):... r.append(L[i])... >>> r['Michael', 'Sarah', 'Tracy']
对这种经常取指定索引范围的操作,用循环十分繁琐,因此,Python提供了切片(Slice)操作符,能大大简化这种操作。
对应上面的问题,取前3个元素,用一行代码就可以完成切片:
>>> L[0:3]['Michael', 'Sarah', 'Tracy']
L[0:3]
表示,从索引0
开始取,直到索引3
为止,但不包括索引3
。即索引0
,1
,2
,正好是3个元素。
如果第一个索引是0
,还可以省略:
>>> L[:3]['Michael', 'Sarah', 'Tracy']
也可以从索引1开始,取出2个元素出来:
>>> L[1:3]['Sarah', 'Tracy']
类似的,既然Python支持L[-1]
取倒数第一个元素,那么它同样支持倒数切片,试试:
>>> L[-2:]['Bob', 'Jack']>>> L[-2:-1]['Bob']
记住倒数第一个元素的索引是-1
。
切片操作十分有用。我们先创建一个0-99的数列:
>>> L = list(range(100))>>> L[0, 1, 2, 3, ..., 99]
可以通过切片轻松取出某一段数列。比如前10个数:
>>> L[:10][0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
后10个数:
>>> L[-10:][90, 91, 92, 93, 94, 95, 96, 97, 98, 99]
前11-20个数:
>>> L[10:20][10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
前10个数,每两个取一个:
>>> L[:10:2][0, 2, 4, 6, 8]
所有数,每5个取一个:
>>> L[::5][0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]
甚至什么都不写,只写[:]
就可以原样复制一个list:
>>> L[:][0, 1, 2, 3, ..., 99]
tuple也是一种list,唯一区别是tuple不可变。因此,tuple也可以用切片操作,只是操作的结果仍是tuple:
>>> (0, 1, 2, 3, 4, 5)[:3](0, 1, 2)
字符串'xxx'
也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:
>>> 'ABCDEFG'[:3]'ABC'>>> 'ABCDEFG'[::2]'ACEG'
在很多编程语言中,针对字符串提供了很多各种截取函数(例如,substring),其实目的就是对字符串切片。Python没有针对字符串的截取函数,只需要切片一个操作就可以完成,非常简单。
小结
有了切片操作,很多地方循环就不再需要了。Python的切片非常灵活,一行代码就可以实现很多行循环才能完成的操作。
迭代
如果给定一个list或tuple,我们可以通过for
循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration)。
在Python中,迭代是通过for ... in
来完成的,而很多语言比如C或者Java,迭代list是通过下标完成的,比如Java代码:
for (i=0; i
可以看出,Python的for
循环抽象程度要高于Java的for
循环,因为Python的for
循环不仅可以用在list或tuple上,还可以作用在其他可迭代对象上。
list这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以迭代,比如dict就可以迭代:
>>> d = { 'a': 1, 'b': 2, 'c': 3}>>> for key in d:... print(key)...acb
因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不一样。
默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.values()
,如果要同时迭代key和value,可以用for k, v in d.items()
。
由于字符串也是可迭代对象,因此,也可以作用于for
循环:
>>> for ch in 'ABC':... print(ch)...ABC
所以,当我们使用for
循环时,只要作用于一个可迭代对象,for
循环就可以正常运行,而我们不太关心该对象究竟是list还是其他数据类型。
那么,如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:
>>> from collections import Iterable>>> isinstance('abc', Iterable) # str是否可迭代True>>> isinstance([1,2,3], Iterable) # list是否可迭代True>>> isinstance(123, Iterable) # 整数是否可迭代False
最后一个小问题,如果要对list实现类似Java那样的下标循环怎么办?Python内置的enumerate
函数可以把一个list变成索引-元素对,这样就可以在for
循环中同时迭代索引和元素本身:
>>> for i, value in enumerate(['A', 'B', 'C']):... print(i, value)...0 A1 B2 C
上面的for
循环里,同时引用了两个变量,在Python里是很常见的,比如下面的代码:
>>> for x, y in [(1, 1), (2, 4), (3, 9)]:... print(x, y)...1 12 43 9
小结
任何可迭代对象都可以作用于for
循环,包括我们自定义的数据类型,只要符合迭代条件,就可以使用for
循环。
列表生成式
列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。
举个例子,要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
可以用list(range(1, 11))
:
>>> list(range(1, 11))[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
但如果要生成[1x1, 2x2, 3x3, ..., 10x10]
怎么做?方法一是循环:
>>> L = []>>> for x in range(1, 11):... L.append(x * x)...>>> L[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的list:
>>> [x * x for x in range(1, 11)][1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
写列表生成式时,把要生成的元素x * x
放到前面,后面跟for
循环,就可以把list创建出来,十分有用,多写几次,很快就可以熟悉这种语法。
for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:
>>> [x * x for x in range(1, 11) if x % 2 == 0][4, 16, 36, 64, 100]
还可以使用两层循环,可以生成全排列:
>>> [m + n for m in 'ABC' for n in 'XYZ']['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
三层和三层以上的循环就很少用到了。
运用列表生成式,可以写出非常简洁的代码。例如,列出当前目录下的所有文件和目录名,可以通过一行代码实现:
>>> import os # 导入os模块,模块的概念后面讲到>>> [d for d in os.listdir('.')] # os.listdir可以列出文件和目录['.emacs.d', '.ssh', '.Trash', 'Adlm', 'Applications', 'Desktop', 'Documents', 'Downloads', 'Library', 'Movies', 'Music', 'Pictures', 'Public', 'VirtualBox VMs', 'Workspace', 'XCode']
for
循环其实可以同时使用两个甚至多个变量,比如dict
的items()
可以同时迭代key和value:
>>> d = { 'x': 'A', 'y': 'B', 'z': 'C' }>>> for k, v in d.items():... print(k, '=', v)...y = Bx = Az = C
因此,列表生成式也可以使用两个变量来生成list:
>>> d = { 'x': 'A', 'y': 'B', 'z': 'C' }>>> [k + '=' + v for k, v in d.items()]['y=B', 'x=A', 'z=C']
最后把一个list中所有的字符串变成小写:
>>> L = ['Hello', 'World', 'IBM', 'Apple']>>> [s.lower() for s in L]['hello', 'world', 'ibm', 'apple']
小结
运用列表生成式,可以快速生成list,可以通过一个list推导出另一个list,而代码却十分简洁。生成器
生成器
通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]
改成()
,就创建了一个generator:
>>> L = [x * x for x in range(10)]>>> L[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]>>> g = (x * x for x in range(10))>>> gat 0x1022ef630>
创建L
和g
的区别仅在于最外层的[]
和()
,L
是一个list,而g
是一个generator。
我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?
如果要一个一个打印出来,可以通过next()
函数获得generator的下一个返回值:
>>> next(g)0>>> next(g)1>>> next(g)4>>> next(g)9>>> next(g)16>>> next(g)25>>> next(g)36>>> next(g)49>>> next(g)64>>> next(g)81>>> next(g)Traceback (most recent call last): File "", line 1, in StopIteration
我们讲过,generator保存的是算法,每次调用next(g)
,就计算出g
的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration
的错误。
当然,上面这种不断调用next(g)
实在是太变态了,正确的方法是使用for
循环,因为generator也是可迭代对象:
>>> g = (x * x for x in range(10))>>> for n in g:... print(n)... 0149162536496481
所以,我们创建了一个generator后,基本上永远不会调用next()
,而是通过for
循环来迭代它,并且不需要关心StopIteration
的错误。
generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for
循环无法实现的时候,还可以用函数来实现。
比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:
def fib(max): n, a, b = 0, 0, 1 while n < max: print(b) a, b = b, a + b n = n + 1 return 'done'
注意,赋值语句:
a, b = b, a + b
相当于:
t = (b, a + b) # t是一个tuplea = t[0]b = t[1]
但不必显式写出临时变量t就可以赋值。
上面的函数可以输出斐波那契数列的前N个数:
>>> fib(6)112358'done'
仔细观察,可以看出,fib
函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。
也就是说,上面的函数和generator仅一步之遥。要把fib
函数变成generator,只需要把print(b)
改为yield b
就可以了:
def fib(max): n, a, b = 0, 0, 1 while n < max: yield b a, b = b, a + b n = n + 1 return 'done'
这就是定义generator的另一种方法。如果一个函数定义中包含yield
关键字,那么这个函数就不再是一个普通函数,而是一个generator:
>>> f = fib(6)>>> f
这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return
语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()
的时候执行,遇到yield
语句返回,再次执行时从上次返回的yield
语句处继续执行。
举个简单的例子,定义一个generator,依次返回数字1,3,5:
def odd(): print('step 1') yield 1 print('step 2') yield(3) print('step 3') yield(5)
调用该generator时,首先要生成一个generator对象,然后用next()
函数不断获得下一个返回值:
>>> o = odd()>>> next(o)step 11>>> next(o)step 23>>> next(o)step 35>>> next(o)Traceback (most recent call last): File "", line 1, in StopIteration
可以看到,odd
不是普通函数,而是generator,在执行过程中,遇到yield
就中断,下次又继续执行。执行3次yield
后,已经没有yield
可以执行了,所以,第4次调用next(o)
就报错。
回到fib
的例子,我们在循环过程中不断调用yield
,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。
同样的,把函数改成generator后,我们基本上从来不会用next()
来获取下一个返回值,而是直接使用for
循环来迭代:
>>> for n in fib(6):... print(n)...112358
但是用for
循环调用generator时,发现拿不到generator的return
语句的返回值。如果想要拿到返回值,必须捕获StopIteration
错误,返回值包含在StopIteration
的value
中:
>>> g = fib(6)>>> while True:... try:... x = next(g)... print('g:', x)... except StopIteration as e:... print('Generator return value:', e.value)... break...g: 1g: 1g: 2g: 3g: 5g: 8Generator return value: done
关于如何捕获错误,后面的错误处理还会详细讲解。
小结
generator是非常强大的工具,在Python中,可以简单地把列表生成式改成generator,也可以通过函数实现复杂逻辑的generator。
要理解generator的工作原理,它是在for
循环的过程中不断计算出下一个元素,并在适当的条件结束for
循环。对于函数改成的generator来说,遇到return
语句或者执行到函数体最后一行语句,就是结束generator的指令,for
循环随之结束。
请注意区分普通函数和generator函数,普通函数调用直接返回结果:
>>> r = abs(6)>>> r6
generator函数的“调用”实际返回一个generator对象:
>>> g = fib(6)>>> g迭代器
我们已经知道,可以直接作用于for
循环的数据类型有以下几种:
一类是集合数据类型,如list
、tuple
、dict
、set
、str
等;
一类是generator
,包括生成器和带yield
的generator function。
这些可以直接作用于for
循环的对象统称为可迭代对象:Iterable
。
可以使用isinstance()
判断一个对象是否是Iterable
对象:
>>> from collections import Iterable>>> isinstance([], Iterable)True>>> isinstance({}, Iterable)True>>> isinstance('abc', Iterable)True>>> isinstance((x for x in range(10)), Iterable)True>>> isinstance(100, Iterable)False
而生成器不但可以作用于for
循环,还可以被next()
函数不断调用并返回下一个值,直到最后抛出StopIteration
错误表示无法继续返回下一个值了。
可以被next()
函数调用并不断返回下一个值的对象称为迭代器:Iterator
。
可以使用isinstance()
判断一个对象是否是Iterator
对象:
>>> from collections import Iterator>>> isinstance((x for x in range(10)), Iterator)True>>> isinstance([], Iterator)False>>> isinstance({}, Iterator)False>>> isinstance('abc', Iterator)False
生成器都是Iterator
对象,但list
、dict
、str
虽然是Iterable
,却不是Iterator
。
把list
、dict
、str
等Iterable
变成Iterator
可以使用iter()
函数:
>>> isinstance(iter([]), Iterator)True>>> isinstance(iter('abc'), Iterator)True
你可能会问,为什么list
、dict
、str
等数据类型不是Iterator
?
这是因为Python的Iterator
对象表示的是一个数据流,Iterator对象可以被next()
函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration
错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()
函数实现按需计算下一个数据,所以Iterator
的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator
甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。
小结
凡是可作用于for
循环的对象都是Iterable
类型;
凡是可作用于next()
函数的对象都是Iterator
类型,它们表示一个惰性计算的序列;
集合数据类型如list
、dict
、str
等是Iterable
但不是Iterator
,不过可以通过iter()
函数获得一个Iterator
对象。
Python的for
循环本质上就是通过不断调用next()
函数实现的,例如:
for x in [1, 2, 3, 4, 5]: pass
实际上完全等价于:
# 首先获得Iterator对象:it = iter([1, 2, 3, 4, 5])# 循环:while True: try: # 获得下一个值: x = next(it) except StopIteration: # 遇到StopIteration就退出循环 break
最早见过手写的,类似于下面这种:
1 2 3 4 5 6 7 8 9 10 11 | 1 import datetime 2 3 def time_1(): 4 begin = datetime.datetime.now() 5 sum = 0 6 for i in xrange ( 10000000 ): 7 sum = sum + i 8 end = datetime.datetime.now() 9 return end - begin 10 11 print time_1() |
输出如下:
1 2 | ➜ Python python time_1.py 0:00:00.280797 |
另外一种方法是使用timeit模块,使用方法如下:
1 2 3 4 | In [ 5 ]: import timeit In [ 6 ]: timeit.timeit( "sum(range(100))" ) Out[ 6 ]: 1.2272648811340332 |
还可以在命令行上使用这种timeit模块,如下:
1 2 3 4 | ➜ Python python - m timeit - s "import time_1 as t" "t.time_1()" 0 : 00 : 00.282044 10 loops, best of 3 : 279 msec per loop |
注意:timeit模块会多次运行程序以获得更精确的时间,所以需要避免重复执行带来的影响。比方说x.sort()这种操作,因为第一次执行之后,后边已经是排好的了,准确性就收到了影响。
还有一种方法是使用cProfile模块,代码如下,名字为time_1.py:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | 1 import datetime 2 3 def time_1(): 4 begin = datetime.datetime.now() 5 sum = 0 6 for i in xrange ( 10000000 ): 7 sum = sum + i 8 end = datetime.datetime.now() 9 return end - begin 10 11 if __name__ = = '__main__' : 12 print time_1() 13 14 import cProfile 15 cProfile.run( 'time_1()' ) |
运行程序结果如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | ➜ Python python time_1.py 0:00:00.282828 2 function calls in 0.000 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno( function ) 1 0.000 0.000 0.000 0.000 <string>:1(<module>) 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} Traceback (most recent call last): File "time_1.py" , line 15, in <module> cProfile.run( 'main()' ) File "/usr/lib/python2.7/cProfile.py" , line 29, in run prof = prof.run(statement) File "/usr/lib/python2.7/cProfile.py" , line 135, in run return self.runctx(cmd, dict, dict) File "/usr/lib/python2.7/cProfile.py" , line 140, in runctx exec cmd in globals, locals File "<string>" , line 1, in <module> NameError: name 'main' is not defined ➜ Python vi time_1.py ➜ Python python time_1.py 0:00:00.284642 5 function calls in 0.281 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno( function ) 1 0.000 0.000 0.281 0.281 <string>:1(<module>) 1 0.281 0.281 0.281 0.281 time_1.py:3(time_1) 2 0.000 0.000 0.000 0.000 {built- in method now} 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} |
一开始代码里最后一行写的是cProfile.run('main()'),提示没有main(),将main()改成函数名字就可以了
这里是最简单的应用,具体大家可以去看看文档,或者直接help(xxx)