博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Python高级特性(切片,迭代,列表生成式,生成器,迭代器)
阅读量:6303 次
发布时间:2019-06-22

本文共 12045 字,大约阅读时间需要 40 分钟。

掌握了Python的数据类型、语句和函数,基本上就可以编写出很多有用的程序了。

比如构造一个1, 3, 5, 7, ..., 99的列表,可以通过循环实现:

L = []n = 1while n <= 99:    L.append(n)    n = n + 2

取list的前一半的元素,也可以通过循环实现。

但是在Python中,代码不是越多越好,而是越少越好。代码不是越复杂越好,而是越简单越好。

基于这一思想,我们来介绍Python中非常有用的高级特性,1行代码能实现的功能,决不写5行代码。请始终牢记,代码越少,开发效率越高。

切片

取一个list或tuple的部分元素是非常常见的操作。比如,一个list如下:

>>> L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']

取前3个元素,应该怎么做?

笨办法:

>>> [L[0], L[1], L[2]]['Michael', 'Sarah', 'Tracy']

之所以是笨办法是因为扩展一下,取前N个元素就没辙了。

取前N个元素,也就是索引为0-(N-1)的元素,可以用循环:

>>> r = []>>> n = 3>>> for i in range(n):...     r.append(L[i])... >>> r['Michael', 'Sarah', 'Tracy']

对这种经常取指定索引范围的操作,用循环十分繁琐,因此,Python提供了切片(Slice)操作符,能大大简化这种操作。

对应上面的问题,取前3个元素,用一行代码就可以完成切片:

>>> L[0:3]['Michael', 'Sarah', 'Tracy']

L[0:3]表示,从索引0开始取,直到索引3为止,但不包括索引3。即索引012,正好是3个元素。

如果第一个索引是0,还可以省略:

>>> L[:3]['Michael', 'Sarah', 'Tracy']

也可以从索引1开始,取出2个元素出来:

>>> L[1:3]['Sarah', 'Tracy']

类似的,既然Python支持L[-1]取倒数第一个元素,那么它同样支持倒数切片,试试:

>>> L[-2:]['Bob', 'Jack']>>> L[-2:-1]['Bob']

记住倒数第一个元素的索引是-1

切片操作十分有用。我们先创建一个0-99的数列:

>>> L = list(range(100))>>> L[0, 1, 2, 3, ..., 99]

可以通过切片轻松取出某一段数列。比如前10个数:

>>> L[:10][0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

后10个数:

>>> L[-10:][90, 91, 92, 93, 94, 95, 96, 97, 98, 99]

前11-20个数:

>>> L[10:20][10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

前10个数,每两个取一个:

>>> L[:10:2][0, 2, 4, 6, 8]

所有数,每5个取一个:

>>> L[::5][0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]

甚至什么都不写,只写[:]就可以原样复制一个list:

>>> L[:][0, 1, 2, 3, ..., 99]

tuple也是一种list,唯一区别是tuple不可变。因此,tuple也可以用切片操作,只是操作的结果仍是tuple:

>>> (0, 1, 2, 3, 4, 5)[:3](0, 1, 2)

字符串'xxx'也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:

>>> 'ABCDEFG'[:3]'ABC'>>> 'ABCDEFG'[::2]'ACEG'

在很多编程语言中,针对字符串提供了很多各种截取函数(例如,substring),其实目的就是对字符串切片。Python没有针对字符串的截取函数,只需要切片一个操作就可以完成,非常简单。

小结

有了切片操作,很多地方循环就不再需要了。Python的切片非常灵活,一行代码就可以实现很多行循环才能完成的操作。

迭代

如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration)。

在Python中,迭代是通过for ... in来完成的,而很多语言比如C或者Java,迭代list是通过下标完成的,比如Java代码:

for (i=0; i

可以看出,Python的for循环抽象程度要高于Java的for循环,因为Python的for循环不仅可以用在list或tuple上,还可以作用在其他可迭代对象上。

list这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以迭代,比如dict就可以迭代:

>>> d = {
'a': 1, 'b': 2, 'c': 3}>>> for key in d:... print(key)...acb

因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不一样。

默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.values(),如果要同时迭代key和value,可以用for k, v in d.items()

由于字符串也是可迭代对象,因此,也可以作用于for循环:

>>> for ch in 'ABC':...     print(ch)...ABC

所以,当我们使用for循环时,只要作用于一个可迭代对象,for循环就可以正常运行,而我们不太关心该对象究竟是list还是其他数据类型。

那么,如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:

>>> from collections import Iterable>>> isinstance('abc', Iterable) # str是否可迭代True>>> isinstance([1,2,3], Iterable) # list是否可迭代True>>> isinstance(123, Iterable) # 整数是否可迭代False

最后一个小问题,如果要对list实现类似Java那样的下标循环怎么办?Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:

>>> for i, value in enumerate(['A', 'B', 'C']):...     print(i, value)...0 A1 B2 C

上面的for循环里,同时引用了两个变量,在Python里是很常见的,比如下面的代码:

>>> for x, y in [(1, 1), (2, 4), (3, 9)]:...     print(x, y)...1 12 43 9

小结

任何可迭代对象都可以作用于for循环,包括我们自定义的数据类型,只要符合迭代条件,就可以使用for循环。

列表生成式

列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。

举个例子,要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用list(range(1, 11))

>>> list(range(1, 11))[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

但如果要生成[1x1, 2x2, 3x3, ..., 10x10]怎么做?方法一是循环:

>>> L = []>>> for x in range(1, 11):...    L.append(x * x)...>>> L[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的list:

>>> [x * x for x in range(1, 11)][1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来,十分有用,多写几次,很快就可以熟悉这种语法。

for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:

>>> [x * x for x in range(1, 11) if x % 2 == 0][4, 16, 36, 64, 100]

还可以使用两层循环,可以生成全排列:

>>> [m + n for m in 'ABC' for n in 'XYZ']['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

三层和三层以上的循环就很少用到了。

运用列表生成式,可以写出非常简洁的代码。例如,列出当前目录下的所有文件和目录名,可以通过一行代码实现:

>>> import os # 导入os模块,模块的概念后面讲到>>> [d for d in os.listdir('.')] # os.listdir可以列出文件和目录['.emacs.d', '.ssh', '.Trash', 'Adlm', 'Applications', 'Desktop', 'Documents', 'Downloads', 'Library', 'Movies', 'Music', 'Pictures', 'Public', 'VirtualBox VMs', 'Workspace', 'XCode']

for循环其实可以同时使用两个甚至多个变量,比如dictitems()可以同时迭代key和value:

>>> d = {
'x': 'A', 'y': 'B', 'z': 'C' }>>> for k, v in d.items():... print(k, '=', v)...y = Bx = Az = C

因此,列表生成式也可以使用两个变量来生成list:

>>> d = {
'x': 'A', 'y': 'B', 'z': 'C' }>>> [k + '=' + v for k, v in d.items()]['y=B', 'x=A', 'z=C']

最后把一个list中所有的字符串变成小写:

>>> L = ['Hello', 'World', 'IBM', 'Apple']>>> [s.lower() for s in L]['hello', 'world', 'ibm', 'apple']

小结

运用列表生成式,可以快速生成list,可以通过一个list推导出另一个list,而代码却十分简洁。生成器

生成器

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

>>> L = [x * x for x in range(10)]>>> L[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]>>> g = (x * x for x in range(10))>>> g
at 0x1022ef630>

创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个generator。

我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?

如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

>>> next(g)0>>> next(g)1>>> next(g)4>>> next(g)9>>> next(g)16>>> next(g)25>>> next(g)36>>> next(g)49>>> next(g)64>>> next(g)81>>> next(g)Traceback (most recent call last):  File "
", line 1, in
StopIteration

我们讲过,generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

>>> g = (x * x for x in range(10))>>> for n in g:...     print(n)... 0149162536496481

所以,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

def fib(max):    n, a, b = 0, 0, 1    while n < max:        print(b)        a, b = b, a + b        n = n + 1    return 'done'

注意,赋值语句:

a, b = b, a + b

相当于:

t = (b, a + b) # t是一个tuplea = t[0]b = t[1]

但不必显式写出临时变量t就可以赋值。

上面的函数可以输出斐波那契数列的前N个数:

>>> fib(6)112358'done'

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

def fib(max):    n, a, b = 0, 0, 1    while n < max:        yield b        a, b = b, a + b        n = n + 1    return 'done'

这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

>>> f = fib(6)>>> f

这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

举个简单的例子,定义一个generator,依次返回数字1,3,5:

def odd():    print('step 1')    yield 1    print('step 2')    yield(3)    print('step 3')    yield(5)

调用该generator时,首先要生成一个generator对象,然后用next()函数不断获得下一个返回值:

>>> o = odd()>>> next(o)step 11>>> next(o)step 23>>> next(o)step 35>>> next(o)Traceback (most recent call last):  File "
", line 1, in
StopIteration

可以看到,odd不是普通函数,而是generator,在执行过程中,遇到yield就中断,下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next(o)就报错。

回到fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。

同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

>>> for n in fib(6):...     print(n)...112358

但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIterationvalue中:

>>> g = fib(6)>>> while True:...     try:...         x = next(g)...         print('g:', x)...     except StopIteration as e:...         print('Generator return value:', e.value)...         break...g: 1g: 1g: 2g: 3g: 5g: 8Generator return value: done

关于如何捕获错误,后面的错误处理还会详细讲解。

小结

generator是非常强大的工具,在Python中,可以简单地把列表生成式改成generator,也可以通过函数实现复杂逻辑的generator。

要理解generator的工作原理,它是在for循环的过程中不断计算出下一个元素,并在适当的条件结束for循环。对于函数改成的generator来说,遇到return语句或者执行到函数体最后一行语句,就是结束generator的指令,for循环随之结束。

请注意区分普通函数和generator函数,普通函数调用直接返回结果:

>>> r = abs(6)>>> r6

generator函数的“调用”实际返回一个generator对象:

>>> g = fib(6)>>> g
迭代器

我们已经知道,可以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如listtupledictsetstr等;

一类是generator,包括生成器和带yield的generator function。

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable

可以使用isinstance()判断一个对象是否是Iterable对象:

>>> from collections import Iterable>>> isinstance([], Iterable)True>>> isinstance({}, Iterable)True>>> isinstance('abc', Iterable)True>>> isinstance((x for x in range(10)), Iterable)True>>> isinstance(100, Iterable)False

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator

可以使用isinstance()判断一个对象是否是Iterator对象:

>>> from collections import Iterator>>> isinstance((x for x in range(10)), Iterator)True>>> isinstance([], Iterator)False>>> isinstance({}, Iterator)False>>> isinstance('abc', Iterator)False

生成器都是Iterator对象,但listdictstr虽然是Iterable,却不是Iterator

listdictstrIterable变成Iterator可以使用iter()函数:

>>> isinstance(iter([]), Iterator)True>>> isinstance(iter('abc'), Iterator)True

你可能会问,为什么listdictstr等数据类型不是Iterator

这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

小结

凡是可作用于for循环的对象都是Iterable类型;

凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

Python的for循环本质上就是通过不断调用next()函数实现的,例如:

for x in [1, 2, 3, 4, 5]:    pass

实际上完全等价于:

# 首先获得Iterator对象:it = iter([1, 2, 3, 4, 5])# 循环:while True:    try:        # 获得下一个值:        x = next(it)    except StopIteration:        # 遇到StopIteration就退出循环        break

最早见过手写的,类似于下面这种:

1
2
3
4
5
6
7
8
9
10
11
1 
import 
datetime
 
2
 
3 
def 
time_1():
 
4     
begin 
= 
datetime.datetime.now()
 
5     
sum 
= 
0
 
6     
for 
in 
xrange
(
10000000
):
 
7         
sum 
= 
sum 
+ 
i
 
8     
end 
= 
datetime.datetime.now()
 
9     
return 
end
-
begin
10
11 
print 
time_1()

输出如下:

1
2
➜  Python python time_1.py
0:00:00.280797

 

另外一种方法是使用timeit模块,使用方法如下:

1
2
3
4
In [
5
]: 
import 
timeit
 
In [
6
]: timeit.timeit(
"sum(range(100))"
)
Out[
6
]: 
1.2272648811340332

还可以在命令行上使用这种timeit模块,如下:

1
2
3
4
➜  Python python 
-
m timeit 
-
s
"import time_1 as t" 
"t.time_1()"
0
:
00
:
00.282044
 
10 
loops, best of 
3
279 
msec per loop

注意:timeit模块会多次运行程序以获得更精确的时间,所以需要避免重复执行带来的影响。比方说x.sort()这种操作,因为第一次执行之后,后边已经是排好的了,准确性就收到了影响。

 

还有一种方法是使用cProfile模块,代码如下,名字为time_1.py:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
1 
import 
datetime
 
2
 
3 
def 
time_1():
 
4     
begin 
= 
datetime.datetime.now()
 
5     
sum 
= 
0
 
6     
for 
in 
xrange
(
10000000
):
 
7         
sum 
= 
sum 
+ 
i
 
8     
end 
= 
datetime.datetime.now()
 
9     
return 
end
-
begin
10
11 
if 
__name__ 
=
= 
'__main__'
:
12     
print 
time_1()
13
14 
import 
cProfile
15 
cProfile.run(
'time_1()'
)

运行程序结果如下:  

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
➜  Python python time_1.py
0:00:00.282828
         
function 
calls 
in 
0.000 seconds
 
   
Ordered by: standard name
 
   
ncalls  tottime  percall  cumtime  percall filename:lineno(
function
)
        
1    0.000    0.000    0.000    0.000 <string>:1(<module>)
        
1    0.000    0.000    0.000    0.000 {method 
'disable' 
of 
'_lsprof.Profiler' 
objects}
 
 
Traceback (most recent call last):
  
File 
"time_1.py"
, line 15, 
in 
<module>
    
cProfile.run(
'main()'
)
  
File 
"/usr/lib/python2.7/cProfile.py"
, line 29, 
in 
run
    
prof = prof.run(statement)
  
File 
"/usr/lib/python2.7/cProfile.py"
, line 135, 
in 
run
    
return 
self.runctx(cmd, dict, dict)
  
File 
"/usr/lib/python2.7/cProfile.py"
, line 140, 
in 
runctx
    
exec 
cmd 
in 
globals, locals
  
File 
"<string>"
, line 1, 
in 
<module>
NameError: name 
'main' 
is not defined
➜  Python 
vi 
time_1.py
➜  Python python time_1.py
0:00:00.284642
         
function 
calls 
in 
0.281 seconds
 
   
Ordered by: standard name
 
   
ncalls  tottime  percall  cumtime  percall filename:lineno(
function
)
        
1    0.000    0.000    0.281    0.281 <string>:1(<module>)
        
1    0.281    0.281    0.281    0.281 time_1.py:3(time_1)
        
2    0.000    0.000    0.000    0.000 {built-
in 
method now}
        
1    0.000    0.000    0.000    0.000 {method 
'disable' 
of 
'_lsprof.Profiler' 
objects}

一开始代码里最后一行写的是cProfile.run('main()'),提示没有main(),将main()改成函数名字就可以了

 

这里是最简单的应用,具体大家可以去看看文档,或者直接help(xxx)  

转载地址:http://pkfxa.baihongyu.com/

你可能感兴趣的文章
键盘回收的几种方法
查看>>
Python(条件判断和循环)
查看>>
day4 linux安装python
查看>>
LeetCode Container With Most Water (Two Pointers)
查看>>
vue (v-if show 问题)
查看>>
https基础
查看>>
css3 canvas之刮刮卡效果
查看>>
并查集模板
查看>>
RESTful Mongodb
查看>>
BZOJ3237:[AHOI2013]连通图(线段树分治,并查集)
查看>>
如何提高Ajax性能
查看>>
Android--自定义加载框
查看>>
LINUX下 lamp安装及配置
查看>>
BZOJ3105 [cqoi2013]新Nim游戏
查看>>
困惑的前置操作与后置操作
查看>>
SDNU 1269.整数序列(水题)
查看>>
BZOJ 2118 Dijkstra
查看>>
Go语言基础之结构体
查看>>
SpringCloud:Eureka Client项目搭建(Gradle项目)
查看>>
jqueryValidate
查看>>